
PMM ~.~.~.~.,~01.44,pp.128-131 
@ Pergamon Press Ltd.lY81.Printed in U.K. 

0021-892G/8i/l 0128 $7.,10/O 

PLANE PROBLEM OF CONVECTIVE HEAT TRANSFER 
IN A NONLINEAR MEDIUPI * 

L. K. MARTINSON 

A problem of convective heat transfer in a perfect fluid flowing past a heated body 
is solved in the thermal boundary layer approximation, for the case when the depend- 
ence of the heat conductivity coefficient of the fluid on temperature obeys a power 
law. The existence is shown of a steady state surface at some distance from the 

body, the surface separating the perturbed region from the unperturbed region into 
which thermal perturbations generated by the heated body do not penetrate. 

Let us consider a hot cylindrical body the cross section Sof which is bounded, in the 
zy -plane, by the contour asz. Let this body be placed in a homogeneous flow of a perfect 

incompressible fluid moving in the direction of the r-axis. The body in the flow generates 
a perturbation and upsets its homogeneity. We shall assume that the flow past the body is 
potential, and denote by q(x,y)and $(x,!/) the velocity potential and the stream function of 
this flow, bothof dimensionof length. Remembering that these functions can be determined for 
a specified contour a!Z using the methods of the functions of complex variable /l/, we shall 
assume the functions {I and 
terms of ipand *by 

iboth known and express the components of the fluid velocity in 

Cry <'* "(i 
7x =Yz 1,= 7 lie "y 3 rii = 1:o x 

a* -Z". 0, (1) 

assume that $ is equal to zero on the contour ?&l and the velocity 
and varies from zero at the stagnation point, to some value L at 
the flow. 

In the general case we 
potential C+ on aQ is known 
the point of convergence of 

In solving the problem 
that the temperature of the 
is a known function ==l (P), 

of convective heat transfer in a moving fluid, we shall assume 
incoming flow is zero, and the temperature at the cylinder surface 
P E an. We require to find the temperature field within the fluid. 

The solution of the present problem was considered in /2/ within the framework of the 
linear theory of heat conduction. In the present paper we study the heat transfer in a non- 
linear medium under the conditions when the heat conductivity coefficient k of the fluid var- 
ies with temperature accordiny to the power law 

li = k" (U i ii,,)“. I;,, 0 > 0 (21 

where zaO denotes the characteristic temperature of the surface of the body in the flow. In 
this case, the problem of determining the steady state temperature field in a moving fluid, 
reduces to that of solving a nonlinear boundary value problem in the regionQ,.R*\ S.The prob- 

u = f (P)< P E dQ , 11 --* 0, 52 -I- y” -3 + co (3) 

where p is density and c is the specific heat capacity of the fluid. 
AS was shown in /4,5/, the velocity of propagation of the thermal perturbations in the 

nonlinear medium in question is finite, and the rate of motion of the thermal wave front de- 
creases with increasing distance from the body. Since the rate of propagation of the thermal 

Fig. 1 

wave front through a moving nonlinear medium decreases in the 
directions opposite to the motion of the medium /6/, we can 
expect that the thermal wave will penetrate the moving medium 
in these directions only to a finite depth, In the steady 
state problem (3) this will lead to the appearance of a stat- 
ionary surface of perturbation Z ( a line in the zty-plane) 
near the hot body. The surface separates the region penetrat- 
ed by the thermal perturbations emitted by the body, in which 
u>O, from the unperturbed region in which IL= 0 (see Fig.1 

in which the perturbed region is shaded). 
This effect appearing in the heat conduction problem for 

a nonlinear moving medium is analogous to the effect of form- 
ation of a stationary surface of perturbation when a compres- 
sible gas flows past a body at a supersonic speed, or to the 
effect of formation of such a surface when a charged particle 
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moves at a speed exceeding the rate of propagation of electromagnetic disturbances in the med- 

ium (in both cases it is essential that the rate of propagation of the perturbations is a 

significant factor). 

Let us perform the Boussinesq transformation (2,~) --f (q,rp). Then, introducing the dimens- 

ionless quantities Uf = u / UO, 'p! = 'p I L,q’=$!L (in what follows we shall omit the primes accom- 

panying the dimensionless quantities), we can pass from problem (3) to the nonlinear problem 

(4) 

II = F* (cp), Q = 0 f0, O<V< 1, u--t 0, V’+$‘+ +m 

We solve the problem (4) in the thermal boundary layer approximation, assuming that the con- 

dition Pe>l where Pe is the Peclet number, holds. The problem (4) is now reduced to the 
following problem for the function u(cp,t) in the region R;*= ((~,t):~>O,$>O): 

au 1 a au 
-=-- u”w a’p pC ag ( 1 (5) 

u=F+@), $=Oo, ‘p.0, u=O, ‘~‘0, u-0, $-Pi_m 

and to a similar problem in the region R-2 = ((V> d): V > 0, 9 Q 0). 
From the physical point of view, problem (5) corresponds to a problem of a thermal bound- 

ary layer near a semi-.bounded hot plate placed in a homogeneous flow of a perfect incompress- 

ible fluid moving in the direction parallel to theplate surface.Here the dependenceoftheheat 

conductivity coefficient on temperature obeys a power law. 

Results of /7/ imply that the solution of (5) with a#0 for the case of a power relat- 

ion F+ ('E) = 'pa, can be written in the form of an asymptotic expansion 

The coefficients bi = bi(o,a) are coefficients of expansion of certain function 

rL 

f (5) = B-’ (1 - 5)’ f3 2 bt (1 - <f 

i=ll 

into a series near the point E= 1 , the function satisfying a nonlinear differential 

equation and the boundary conditions 

From (7) we obtain 

particular, we have /7/ 

df 
.f-m~;iF=msB”&[fa~] (7) 

f (0) = 1, f (1) = 0 

the recurrent relations from which we find the coefficients bi. In 

Cl-m 
b,=l, b,=Zms(s_, ,)> b,=--1 

1 +~ 0.56, (69 Is - 3) 
3(25 ,~ 1) 

In the special case cc= a-* all bi = 0 for i>l, and the exact solution of the problem can be 

written in the simple analytic form 

From the form of the solution (6) it follows that a stationary surface (line on the zy- 

or w-planes) exists in a moving nonlinear medium (u>O), separating the perturbed region 

near the heated body where u>O, from the unperturbed region where (I = 0. On the @-plane 
the eqution of this line has the form 

$= A'prn, m=v2(aO+1)>0 

We note that at the surface of perturbation which represents, in general, a surface of 

weak discontinuity of the function U, the conditions of continuity of temperature and thermal 

flux both hold. 
Fig.2 depicts, for various values of the power index d corresponding to the different laws 

governing the temperature change along the surface of the body, with the perturbation lines 

depicting the quantitative form of the thermal boundary layer. We see that, for a given value 

of a, the change in the nonlinearity parameter (T affects significantly the spatial structure 
of the thermal boundary layer. 

From the physical point of view, the presence of such a stationary surface of perturba- 
tion means that the thermal boundary layer near the hot body is of finite thickness. This is 
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Fig.2 

duetothe factthatthe thermal perturbations propagate through a nonlinear medium with a finite 

velocity and drift downstream with the moving medium, penentrating into it in the q direction 
only to a finite distance. 

The thickness of the thermal boundary layer decreases with increasing Peclet number. On 

the other hand, when o-0 then h- SC= and the temperature in a fluid with constant heat 
conductivity coefficient tends to zero only asymptotically at infinity. This is caused by the 
fact that the thermal perturbations generated by the plate in such a linear medium, propagate 

with infinite velocity and penetrate the moving medium infinitely far. 

The temperature distribution (6) in the thermal boundary layer obtained above makes poss- 

ible the estimation of the intensity of the convective heat transfer in the problem in quest- 

ion. We shall restrict ourselves, for simplicity, to the case a= 0 when the surface tempera- 
tureofthe body in the flow is constant and equal to uO. 

The local thermal flux rl at the plate surface can be found in the case of a= Ofrom the 

expression 

Integrating the heat transfer along the line L on the upper surface of the plate and tak- 

ing (8) into account, we obtain the following expression for the integral Nusselt number: 

(9) 

Here Nu(O)= 21/Pe/n is the Nusselt number foi the case of a fluid with constant heat conductiv- 

ity coefficient flowing past a plate. 

For o=l, the coefficients bi have the following values /8/: b,= 1, b,= -0.25, b,= 0.014, 

b, = 0.0069, b, = -0.0064. Therefore, from (9) we find that Nu(1) / Nu(0) = 0.77. Similar computation 
for o = 4 yields. Su(4) / Nu(0) = 0.5G. 

We note that the solution of the problem (5) of the thermal boundary layer, which repres- 

ented the principal term of the asymptotics of problem (4) with respect to the parameter Pe-1, 

does not describe the temperature field near the stagnation point of the flow. This must be 

found from the exact solution of (4). The solution may be obtained e.g. by numerical methods 
described in /7/. Using the results of /6/, we can establish the dependence of the width of 
the perturbation region near the stagnation point, on the parameters of the problem, with the 

relationship given in the form 11 - Lo-‘PC-‘. 

In conclusion we note that problem (5) also describes, in the diffusion boundary layer 

approximation, the process of mass transfer in a moving medium when the diffusion coefficient 

is a power function of the concentration. 
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